Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
1.
Curr Comput Aided Drug Des ; 17(3): 469-479, 2021.
Article in English | MEDLINE | ID: covidwho-1344218

ABSTRACT

BACKGROUND: 2019-nCoVis, a novel coronavirus was isolated and identified in 2019 in the city of Wuhan, China. On February 17, 2020 and according to the World Health Organization, 71, 429 confirmed cases worldwide were identified, among them 2162 new cases were recorded in the last 24 hours. One month later, the confirmed cases jumped to 179111, with 11525 new cases in the last 24 hours, with 7426 total deaths. No drug or vaccine is present at the moment for human and animal coronavirus. METHODS: The inhibition of 3CL hydrolase enzyme provides a promising therapeutic principle for developing treatments against CoViD-19. The 3CLpro (Mpro) is known for involving in counteracting the host innate immune response. RESULTS: This work presents the inhibitory effect of some natural compounds against 3CL hydrolase enzyme, and explains the main interactions in inhibitor-enzyme complex. Molecular docking study was carried out using Autodock Vina. By screening several molecules, we identified three candidate agents that inhibit the main protease of coronavirus. Hispidin, lepidine E, and folic acid are bound tightly in the enzyme, therefore strong hydrogen bonds have been formed (1.69-1.80Å) with the active site residues. CONCLUSION: This study provides a possible therapeutic strategy for CoViD-19.


Subject(s)
COVID-19 Drug Treatment , Coronavirus 3C Proteases/antagonists & inhibitors , Drug Design , Folic Acid/pharmacology , Molecular Docking Simulation , Pyrones/pharmacology , SARS-CoV-2/drug effects , Viral Protease Inhibitors/pharmacology , Binding Sites , COVID-19/virology , Catalytic Domain , Computer-Aided Design , Coronavirus 3C Proteases/metabolism , Folic Acid/chemistry , Hydrogen Bonding , Molecular Structure , Protein Binding , Pyrones/chemistry , SARS-CoV-2/enzymology , Structure-Activity Relationship , Viral Protease Inhibitors/chemistry
2.
J Infect Public Health ; 13(12): 1856-1861, 2020 Dec.
Article in English | MEDLINE | ID: covidwho-1023653

ABSTRACT

BACKGROUND: Outbreak of COVID-19 has been recognized as a global health concern since it causes high rates of morbidity and mortality. No specific antiviral drugs are available for the treatment of COVID-19 till date. Drug repurposing strategy helps to find out the drugs for COVID-19 treatment from existing FDA approved antiviral drugs. In this study, FDA approved small molecule antiviral drugs were repurposed against the major viral proteins of SARS-CoV-2. METHODS: The 3D structures of FDA approved small molecule antiviral drugs were retrieved from PubChem. Virtual screening was performed to find out the lead antiviral drug molecules against main protease (Mpro) and RNA-dependent RNA polymerase (RdRp) using COVID-19 Docking Server. Furthermore, lead molecules were individually docked against protein targets using AutoDock 4.0.1 software and their drug-likeness and ADMET properties were evaluated. RESULTS: Out of 65 FDA approved small molecule antiviral drugs screened, Raltegravir showed highest interaction energy value of -9 kcal/mol against Mpro of SARS-CoV-2 and Indinavir, Tipranavir, and Pibrentasvir exhibited a binding energy value of ≥-8 kcal/mol. Similarly Indinavir showed the highest binding energy of -11.5 kcal/mol against the target protein RdRp and Dolutegravir, Elbasvir, Tipranavir, Taltegravir, Grazoprevir, Daclatasvir, Glecaprevir, Ledipasvir, Pibrentasvir and Velpatasvir showed a binding energy value in range from -8 to -11.2 kcal/mol. The antiviral drugs Raltegravir, Indinavir, Tipranavir, Dolutegravir, and Etravirine also exhibited good bioavailability and drug-likeness properties. CONCLUSION: This study suggests that the screened small molecule antiviral drugs Raltegravir, Indinavir, Tipranavir, Dolutegravir, and Etravirine could serve as potential drugs for the treatment of COVID-19 with further validation studies.


Subject(s)
Antiviral Agents/pharmacology , COVID-19 Drug Treatment , Coronavirus Protease Inhibitors/pharmacology , RNA-Dependent RNA Polymerase/antagonists & inhibitors , SARS-CoV-2/drug effects , Drug Repositioning , Heterocyclic Compounds, 3-Ring/pharmacology , Humans , Indinavir/pharmacology , Molecular Docking Simulation , Nitriles/pharmacology , Oxazines/pharmacology , Piperazines/pharmacology , Pyridines/pharmacology , Pyridones/pharmacology , Pyrimidines/pharmacology , Pyrones/pharmacology , Raltegravir Potassium/pharmacology , SARS-CoV-2/enzymology , Sulfonamides/pharmacology
3.
Antivir Chem Chemother ; 28: 2040206620983780, 2020.
Article in English | MEDLINE | ID: covidwho-999586

ABSTRACT

BACKGROUND: Gallium has demonstrated strong anti-inflammatory activity in numerous animal studies, and has also demonstrated direct antiviral activity against the influenza A H1N1 virus and the human immunodeficiency virus (HIV). Gallium maltolate (GaM), a small metal-organic coordination complex, has been tested in several Phase 1 clinical trials, in which no dose-limiting or other serious toxicity was reported, even at high daily oral doses for several months at a time. For these reasons, GaM may be considered a potential candidate to treat coronavirus disease 2019 (COVID-19), which is caused by the SARS-CoV-2 virus and can result in severe, sometimes lethal, inflammatory reactions. In this study, we assessed the ability of GaM to inhibit the replication of SARS-CoV-2 in a culture of Vero E6 cells. METHODS: The efficacy of GaM in inhibiting the replication of SARS-CoV-2 was determined in a screening assay using cultured Vero E6 cells. The cytotoxicity of GaM in uninfected cells was determined using the Cell Counting Kit-8 (CCK-8) colorimetric assay. RESULTS: The results showed that GaM inhibits viral replication in a dose-dependent manner, with the concentration that inhibits replication by 50% (EC50) being about 14 µM. No cytotoxicity was observed at concentrations up to at least 200 µM. CONCLUSION: The in vitro activity of GaM against SARS-CoV-2, together with GaM's known anti-inflammatory activity, provide justification for testing GaM in COVID-19 patients.


Subject(s)
Anti-Inflammatory Agents/pharmacology , Antiviral Agents/pharmacology , COVID-19 Drug Treatment , Organometallic Compounds/pharmacology , Pyrones/pharmacology , SARS-CoV-2/drug effects , Animals , Anti-Inflammatory Agents/therapeutic use , Anti-Inflammatory Agents/toxicity , Antiviral Agents/therapeutic use , Antiviral Agents/toxicity , Chlorocebus aethiops , Dose-Response Relationship, Drug , Drug Evaluation, Preclinical , Iron/metabolism , Organometallic Compounds/therapeutic use , Organometallic Compounds/toxicity , Pyrones/therapeutic use , Pyrones/toxicity , SARS-CoV-2/physiology , Vero Cells , Virus Replication/drug effects
SELECTION OF CITATIONS
SEARCH DETAIL